Journal of Organometallic Chemistry, 307 (1986) 327-341 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

PERFLUOROMETHYL-ELEMENT-LIGANDEN

XXXVI *. CHROM-, MOLYBDÄN- UND WOLFRAMKOMPLEXE DES TYPS M(CO)₅L UND M(CO)₄L₂ MIT MERCAPTOPHOSPHAN-LIGANDEN

J. GROBE*, D. LE VAN und W. MEYRING

Anorganisch-Chemisches Institut der Universität Münster, Corrensstrasse 36, D-4400 Münster (B.R.D.) (Eingegangen den 9. Dezember 1985)

Summary

The coordinating properties of the ligands L^1 (= MeP(SMe)₂) and L^2 (= $CF_3P(SMe)_2$) have been studied by synthesis and spectroscopic investigations (IR, NMR, MS) of their chromium, molybdenum and tungsten complexes M(CO)₅L (M = Cr, Mo, W, L¹: 1-3; L²: 4-6) and M(CO)₄L₂ (L¹: 7-9; L²: 10-12). Complexes 1-6 are obtained by indirect photochemical substitution via M(CO)₅THF, compounds 7-12 by replacement of norbornadiene (NBD) in M(CO)₄NBD. Spectroscopic data [ν (CO), $\Delta\delta$] support the σ -donor/ π -acceptor model of the MP bonds and the influence of mesomeric besides inductive and steric effects.

Zusammenfassung

Die Koordinationseigenschaften der Liganden L¹ (= MeP(SMe)₂) und L² (= CF₃P(SMe)₂) werden durch Synthese und spektroskopische Untersuchungen (IR, NMR, MS) der Chrom-, Molybdän- und Wolframkomplexe M(CO)₅L (M = Cr, Mo, W; L¹: 1-3; L²: 4-6) und M(CO)₄L₂ (L¹: 7-9; L²: 10-12) überprüft. Die Komplexe 1-6 werden durch indirekte photochemische Substitution über die Zwischenstufen M(CO)₅THF, die Verbindungen 7-12 durch Ersatz von Norbornadien (NBD) aus M(CO)₄NBD erhalten. Die spektroskopischen Daten [ν (CO), $\Delta\delta$] stützen das σ -Donor/ π -Akzeptor-Modell der MP-Bindungen und den Einfluss mesomerer neben induktiven und sterischen Effekten.

Einleitung

Organoelement-Element-Verbindungen des Typs $R_n E(E'R)_{3-n}$ (E = P, As; E' = S, Se, Te; R = CH₃, CF₃) enthalten an E und E' einsame Elektronenpaare und sind

^{*} Für Teil XXXV siehe Lit. 1.

daher als Koordinationspartner für Übergangsmetalle geeignet. Bei den bisherigen Untersuchungen an Komplexen des Typs M(CO)₅L (M = Cr, Mo, W; L = R₂EE'R, R₂EE'R₂) und M(CO)₄L₂ (L = R₂PE'Me; R = CH₃, CF₃; E' = S, Se) [2,3] wurde unabhängig von R das Phosphoratom als Bindungspartner von M nachgewiesen. Dies gilt auch für die in jüngster Zeit verwendeten Dithiaphospholan-Liganden RP(SR')₂ (R = CH₃, CF₃; (SR')₂ = SCH₂CH₂S, S(o-C₆H₄)S) [4] in Kombination mit Cr(CO)_n-Fragmenten. Die beobachteten Koordinationseffekte sind gut zu deuten, wenn man im Rahmen des synergetischen σ -Donor/ π -Akzeptor-Modells ausser induktiven und sterischen auch mesomere Substituenteneinflüsse berücksichtigt. In der vorliegenden Arbeit berichten wir über das koordinative Verhalten der Liganden RP(SMe)₂ (R = CH₃, CF₃), deren Präparation und spektroskopische Daten an anderer Stelle mitgeteilt werden [5].

Darstellung der $M(CO)_5L$ -Komplexe 1–6 (M = Cr, Mo, W; L = RP(SMe)_2)

Die Synthese dieser Komplexe erfolgt generell nach dem "Indirekten photochemischen Verfahren" [6] in THF als Lösungsmittel. Die Bestrahlung wird bis zur Abspaltung von einem Mol CO je Mol M(CO)₆, die anschliessende Umsetzung mit den Liganden als Dunkelreaktion betrieben. Der Austausch von THF gegen die Phosphanliganden ist mit deutlichen Farbänderungen (Cr: orange-gelb; Mo: braungelb-schwach gelb; W: gelb-fast farblos) verbunden, so dass die Reaktionsgeschwindigkeiten als Funktion von M und R abgeschätzt werden können. Dabei zeigt sich, dass das basischere Phosphan ($R = CH_3$) schneller reagiert und die Produkte in höheren Ausbeuten liefert als die analoge CF₁-Verbindung. Als Funktion von M wird die Reaktivitätsabstufung Cr > W >> Mo beobachtet. Die Komplexe $M(CO)_{5}PMe(SMe)_{2}$ fallen in Form hellgelber (M = Cr, 59%), hellbrauner (Mo, 45%) bzw. hellgelber (W, 62%) Kristalle, die Verbindungen M(CO)₅P(CF₃)(SMe)₂ als gelbgrünes (Cr, 45%), orangegelbes (Mo, 35%) und braungelbes (W, 50%) Öl an. Sie sind nur mässig luft- und lichtempfindlich, zersetzen sich jedoch relativ rasch unter thermischer Belastung, z. B. bei der Sublimation. Die Reinigung erfolgt daher durch Umkristallisation aus Pentan oder Hexan bei Temperaturen zwischen -20 und -78°C. 1 wurde vor kurzem auf elektrochemischem Weg von Fritz et al. [7], allerdings in geringerer Ausbeute, dargestellt; die Identität wird durch die gute Übereinstimmung der spektroskopischen Daten bestätigt.

Darstellung der M(CO)₄L₂-Komplexe 7–12 (M = Cr, Mo, W; L = RP(SMe)₂)

Als Ausgangsverbindungen für die Synthese *cis*-disubstituierter Komplexe der Typs $M(CO)_4L_2$ haben sich in vielen Untersuchungen [8–12] die Tetracarbonylnorbornadienmetall-Verbindungen bewährt. Bei Liganden geringer Grösse bleibt bei dem Austausch des NBD die Konfiguration erhalten; sterisch anspruchsvolle Liganden oder Liganden mit grossem π -Akzeptorvermögen führen dagegen oft schon bei wenig erhöhter Temperatur zur partiellen oder vollständigen Umlagerung in die *trans*-Isomeren.

Die Reaktionen werden in Pentan (M = Cr, Mo) oder Hexan (M = W) als Lösungsmittel durchgeführt und NMR-spektrometrisch verfolgt. Um die Bildung der *trans*-Verbindungen weitgehend zu unterbinden, erfogten die Umsetzungen bei Raumtemperatur. In Abhängigkeit von L und M werden Reaktionszeiten zwischen einer Stunde und mehreren Wochen registriert. Das CF₃-substituierte Phosphan reagiert deutlich langsamer als die entsprechende Methylverbindung. Als Funktion von M wird die Reaktivitätsabstufung Mo \gg W > Cr beobachtet. Die CF₃P(SMe)₂-Komplexe des Chroms und Wolframs bilden sich so langsam, dass erst nach vier Wochen Umsätze von 80 bzw. 90% erreicht werden. Die Chromcarbonylderivate 7 und 10 fallen ausschliesslich in Form der *trans*-Komplexe an. Die Reinisolierung der Produkte gelingt durch Umkristallisation aus Pentan, Hexan oder Hexan/Toluol-Gemischen in Ausbeuten von 50 bis 70%. Die Cr- und Mo-Verbindungen 7, 8, 10 und 11 fallen als gelbe, die W-Komplexe 9 bzw. 12 als braungrüne (L = MeP(SMe)₂) bzw. hellbraune (L = CF₃P(SMe)₂) Feststoffe an und werden wie die oben beschriebenen Verbindungen 1–6 analytisch (C, H) und spektroskopisch (IR, NMR, MS) charakterisiert.

Spektroskopische Untersuchungen

Die spektroskopischen Daten (IR, NMR, MS) dienen nicht nur zur Charakterisierung der neuen Verbindungen, sondern auch als Basis für die Diskussion der Bindungsverhältnisse. Von besonderem Interesse sind in dieser Hinsicht die Koordinationseffekte $\Delta \nu$ (CO) im CO-Valenzbereich sowie die Änderungen $\Delta \delta$ und ΔJ der chemischen Verschiebungen bzw. der Kopplungskonstanten in den NMR-Spektren.

IR-Spektren im CO-Valenzbereich

Für die Komplexe 1-6 des Typs $M(CO)_5 L$ (idealisierte Symmetrie: C_{4v}) sind drei IR-aktive CO-Valenzbanden zu erwarten. Die an sich IR-verbotene A_1^2 -Schwingung gewinnt durch symmetrie-erlaubte Kopplung mit der A_1^1 -Schwingung sowie infolge der durch L verursachten Verzerrung der C_{4v} -Symmetrie an Intensität. Der Frequenzabstand zwischen den Banden höchster und geringster Intensität (E und A_1^2) sollte nach Orgel [13] in der Grössenordnung von 100–120 cm⁻¹ liegen. Bei der Zuordnung helfen die erwarteten Abstufungen in der Intensität [$I(E) \gg I(A_1^1) > I(A_1^2)$] und der Frequenz [$\nu(A_1^2) > \nu(A_1^1) > \nu(E)$] der Banden.

Eine Verbreiterung oder Aufspaltung der E-Bande bei den Komplexen mit $L = CF_3P(SMe)_2$ (10–12) deutet auf die Abweichung der $M(CO)_5$ -Einheit von der idealen C_{4v} -Symmetrie hin. Als weitere Konsequenz der Symmetrieerniedrigung wird die B₁-Bande beobachtet, bei den Komplexen des CF₃P-Liganden mit niedriger, bei den Derivaten des MeP-Liganden mit sehr geringer Intensität. Sie liegt zwischen den Absorptionen der A₁²- und A₁¹-Schwingungen. Die CO-Valenzfrequenzen (cm⁻¹) sind zusammen mit den nach Cotton und Kraihanzel [14] ermittelten Valenzkraft-konstanten in Tab. 1 zusammengefasst.

Die Richtigkeit der Zuordnung wird durch die Tatsache bestätigt, dass in allen Fällen das Postulat $k_1 < k_2$ des Cotton-Kraihanzel-Modells erfüllt ist. Ausserdem ergibt sich für die nach $\nu(B_1) = \frac{1}{3}[\nu(A_1^2) + 2\nu(E)]$ [15] berechneten Werte eine gute Übereinstimmung mit den Messdaten. Figur 1 zeigt in schematischer Darstellung die Änderungen der CO-Valenzfrequenzen und Kraftkonstanten als Funktion von L. Die Werte für M(CO)₅NMe₃ und M(CO)₅PMe₃ [16] wurden zum Vergleich herangezogen.

Die für die Komplexe *trans*-Cr(CO)₄L₂ (7, 10) und *cis*-M(CO)₄L₂ (M = Mo; 8 und 11; M = W; 9 und 12) beobachteten CO-Valenzfrequenzen und die nach Cotton

LLE	
[ABE	

TEXE (L =	
⁴ L ₂ -KOMP	
(0) M(CO)	
IND	
M(CO) ₅ L-	
DER	
Nm ⁻¹)	
k (10 ⁻²	
w (cm ⁻¹) ^a UND VALENZKRAFTKONSTANTEN k	= Cr, Mo, W); Lösungsmittel: Cyclohexan
CO-VALENZFREQUENZEN	$CH_3 P(SMe)_2$, $CF_3 P(SMe)_2$; M =

Verb.	Komplextyp	Г	¥	»(A1 [∠])	⊮(B ₁)	$\nu(A_1^{'})$	у (Е)	$\nu(\mathbf{B_1})_{\mathrm{ber.}}^{\prime\prime}$	k_1	k_2	k, '
1	M(CO) ₅ L	CH ₃ P(SMe) ₂	C	2072m	1990vw	1960s	1952vs	1992	15.73	15.97	0.290
7			Mo	2078m	1998vw	1965vs	1958vs	8661	15.84	16.07	0.291
÷			M	2082m	1994vw	1962vs	1957vs	1999	15.77	16.08	0.304
4		CF ₃ P(SMe) ₂	ъ	2075m	2001w	1975vs	1960vs	1998	15.98	16.07	0.277
ŝ			Мо	2089m	2010w	1984s	1974vs	2012	16.11	16.30	0.280
6			M	2088m	2007w	1981s	1973vs	2011	16.04	16.30	0.281
				$p(A_1^2)$	$p(A_1^1)$	<i>v</i> (B ₁)	v(B ₂)	$\nu(E_u)$			
7	M(CO) ₄ L ₂	CH ₃ P(SMe) ₂	Cr trans					1925s			
80			Mo cis	2035m	1951s	1930vs	1930sh		15.38	15.71	0.336
6			W cis	2034m	1948s	1939vs	1939sh		15.46	15.74	0.278
10		CF ₃ P(SMe) ₂	Cr trans					1947s			
Ξ			Mo cis	2056m	1981m	1962vs	1962sh		15.85	16.16	0.306
12			W cis	2047m	1973m	1952vs	1952sh		15.70	16.01	0.312

Fig. 1. Variation von ν (CO) bzw. k der M(CO)₅L-Komplexe (M = Cr, Mo) als Funktion von L.

und Kraihanzel [14] berechneten CO-Valenzkonstanten sind in Tab. 1 wiedergegeben. Die *trans*-Konfiguration der beiden Chromverbindungen führt zu den für D_{4k} -Symmetrie erwarteten Ein-Banden-Spektren (Rasse E_u). Die Lage der Bande entspricht in etwa der B₁-Schwingung des *cis*-Isomeren. Bei Vernachlässigung der Symmetrieerniedrigung durch die koordinierten Liganden sind die *cis*-M(CO)₄L₂-Komplexe nach dem Prinzip der lokalen Symmetrie der Punktgruppe C_{2v} zuzuordnen, für die gruppentheoretische Auswahlregeln vier IR-aktive CO-Valenzschwingungen der Rassen A₁², A₁¹, B₁ und B₂ erwarten lassen. Konkret werden hier Drei-Banden-Spektren erhalten, die durch zufällige Entartung der B₁- und B₂-Schwingung erklärbar sind. In einigen Fällen ist die B₂-Schwingung als Schulter angedeutet. Für die Frequenz- bzw. Intensitätsabstufung gelten folgende Beziehungen: $v(A_1^2) > v(A_1^1) > v(B_1) \approx v(B_2)$; $I(A_1^2) < I(A_1^1) \approx I(B_2) < I(B_1)$. Die korrekte Zuordnung der Banden ergibt sich aus der Intensitätsverteilung, der Gültigkeit der Bedingung $k_1 < k_2$ des Cotton-Kraihanzel-Modells und der Frequenzdifferenz $\Delta v = v(A_1^2) - v(B_1) \approx 100$ cm⁻¹ in Einklang mit dem Postulat von Orgel [13].

Die Änderung der CO-Valenzfrequenzen und der Kraftkonstanten als Funktion von M und L ist in Fig. 2 schematisch dargestellt. Zum Vergleich wurden Literaturdaten für R_2 PSMe-Komplexe [17] herangezogen.

Aus den Strichdiagrammen der Fig. 1 und 2 lassen sich für die Liganden $MeP(SMe)_2$ und $CF_3P(SMe)_2$ folgende Koordinationseffekte ableiten:

(a) Der Übergang von NH₃- und NMe₃-Liganden, die ausschliesslich σ -Donorei-

Fig. 2. Variation von ν (CO) bzw. k der M(CO)₄L₂-Komplexe (M = Mo, W) als Funktion von L.

genschaften besitzen, zu Phosphanen und den hier untersuchten Mercaptophosphanen ist mit einem Anstieg der Frequenzen der zu L *trans*-ständigen CO-Liganden $(\nu(A_1^l) \text{ und } \nu(B_2) \text{ bei } cis-M(CO)_4L_2 \text{ bzw. } \nu(A_1^l) \text{ bei } M(CO)_5L) \text{ und der zugehörigen}$ Kraftkonstanten k_1 verbunden. Die übrigen CO-Frequenzen und k_2 zeigen dagegen nur relativ geringe Änderungen. Dieser Effekt wird π -Bindungsanteilen in der MP-Bindung zugeschrieben.

(b) Der Ersatz von Methyl- durch Trifluormethylgruppen führt zu einer Erhöhung der CO-Valenzfrequenzen um 10-20 cm⁻¹ [M(CO)₅L] bzw. 20-30 cm⁻¹ [M(CO)₄L₂] und ist annähernd proportional zur Zahl der CH₃/CF₃-Substituenten am Phosphor. Diese Verschiebung betrifft alle CO-Valenzbanden und ist daher hauptsächlich der induktiven Absenkung der Elektronendichte an den Zentralatomen M zuzuschreiben. Nur die etwas stärkere Anhebung der ν (CO)-Werte der *trans*-ständigen CO-Liganden ist auf π -Rückbindungseffekte zurückzuführen. Die daraus resultierende Ähnlichkeit von k_1 und k_2 weist auf eine Angleichung der π -Bindungsordnung für *cis*- und *trans*-CO-Liganden hin.

(c) Für die Einordnung der Phosphane $RP(SMe)_2$ ($R = CH_3$, CF_3) in eine Ligandenreihe abnehmender π -Akzeptorstärke folgt aus den IR-Spektren die Abstufung (CF_3)₂ $P > (CF_3)_2 PSMe > CF_3 P(SMe)_2 > MeP(SMe)_2 > Me_2 PSMe > Me_3 P.$

Kernresonanzspektren

Die Ergebnisse der ¹H-, ¹⁹F- und ³¹P-NMR-Untersuchungen bestätigen die in den Komplexen vorliegenden Gruppierungen und Verknüpfungen. Für die Beurteilung der Bindungsverhältnisse sind die Koordinationseffekte $\Delta \delta = \delta(\text{Komplex}) - \delta(\text{Ligand})$ und $\Delta J = J(\text{Komplex}) - J(\text{Ligand})$ von besonderem Interesse. Die Tab. 2 bis 4 geben die ermittelten Daten wieder.

Protonenresonanzspektren (Tab. 2)

Die ¹H-NMR-Spektren der Komplexe $M(CO)_5L$ zeigen für $L = MeP(SMe)_2$ zwei Dubletts im Intensitätsverhältnis 1/2, für $L = CF_3P(SMe)_2$ ein Dublett. Für die Signale der MeP- und MeS-Protonen wird eine unterschiedliche Abhängigkeit vom Lösungsmittel beobachtet. Während die $\delta(H)$ -Werte der MeP-Gruppe sich beim Wechsel des Lösungsmittels (C_6D_6 gegen CDCl₃) nur wenig ändern, wird für die Resonanz der MeS-Protonen eine Verschiebung um etwa 0.8 ppm verzeichnet.

Die Protonensignale der koordinierten RP(SMe)₂-Liganden (R = CH₃, CF₃) lassen sich im Fall der M(CO)₄L₂-Komplexe nicht generell als Spinsysteme 1. Ordnung interpretieren, da wegen der PP'-Kopplung der magnetisch nicht äquivalenten Phosphorkerne Spinsysteme des Typs $X_n AA'X'_n$ (X, X' = H; A, A' = P; n = 3 (MeP), n = 6 (MeS)) resultieren. Das Resonanzmuster wird dabei von der Grösse und dem Vorzeichen der Kopplungskonstanten ²J(PP'), ²J(PH) und ⁴J(P'H) bzw. ³J(PH) und ⁵J(P'H) bestimmt. Die für die hier beschriebenen Komplexe beobachteten Signale kommen den beiden Grenzfällen |J(PP')| > |J(PH) + J(P'H)| mit Pseudotriplett- und $|J(PP')| < |J(PH) + J(P'H)| \approx 0$ mit Dublettstruktur nahe. Figur 3 zeigt als Beispiel das ¹H-NMR-Spektrum von *cis*-Mo(CO)₄[MeP(SMe)₂]₂ (**8**).

Es enthält zwei Signale im Intensitätsverhältnis 1/2, bei denen jeweils eine mehr oder weniger breite Zentralabsorption von einem scharfen 1/1-Dublett flankiert wird. Wegen der geringeren σ -Donorstärke der CF₃P(SMe)₂-Liganden fällt die PP'-Kopplung in den M(CO)₄[CF₃P(SMe)₂]₂-Komplexen offensichtlich kleiner aus, so dass für diese Derivate nahezu ideale Dublettmuster erhalten werden. Da den Spektren höherer Ordnung keine ausreichende Zahl an Kopplungsparametern zu entnehmen ist, muss auf eine vollständige Analyse verzichtet werden. Bei der Auswertung werden daher die Abstände der äusseren Linien |J| = |J(PH) + J(P'H)|als ²J(PH) (MeP) bzw. ³J(PH) (MeS) erfasst [18]. Als chemische Verschiebung wird jeweils der Signalschwerpunkt angegeben.

Aus den ¹H-NMR-Spektren der $M(CO)_5L$ - und $M(CO)_4L_2$ -Komplexe lassen sich im Vergleich mit den Daten der freien Liganden und in Übereinstimmung mit früheren Ergebnissen [2–4,8] folgenden Aussagen ableiten:

(a) Die Resonanz der MeP-Gruppe erfährt bei der Koordination der Liganden eine charakteristische Tieffeldverschiebung. Gleichzeitig ändern sich die ${}^{2}J(PH)$ -Kopp-

Fig. 3. ¹H-NMR-Spektrum von cis-Mo(CO)₄[MeP(SMe)₂]₂ (8).

Komplex-	Verb.	Nicht koo	rdinierte Gru	ıppen SMe				Koordinie	rte Gruppe (CH ₃ P			
ſŊ		δ(CH _{3L})	δ(CH _{3κ})	Δδ(CH ₃)	³ J(HP _L)	$^{3}J(\mathrm{HP}_{\mathbf{K}})$	$\Delta^3 J(HP)$	δ(CH _{3L})	$\delta(CH_{3_{\mathbf{K}}})$	$\Delta\delta(CH_3)$	$^{2}J(HP_{L})$	$^{2}J(HP_{K})$	$\Delta^2 J(HP)$
M(CO),L	1	2.12	1.78	-0.34	9.5	10.75	1.25	1.52	1.54	0.02	11.0	-4.25	- 15.25
	7	2.12	1.83	-0.29	9.5	10.35	0.85	1.52	1.61	0.09	11.0	-2.85	-13.85
	e	2.12	1.75	-0.37	9.5	11.50	2.00	1.52	1.72	0.20	11.0	-3.75	- 14.75
	4	1.97	1.87	-0.10	11.5	11.75	0.25						
	ŝ	1.97	1.93	-0.04	11.5	12.50	1.00						
	9	1.97	1.88	- 0.09	11.5	13.10	1.60						
M(CO) ₄ L ₂	7	2.12	2.05	- 0.07	9.5	10.5	1.00	1.52	1.85	0.36	11.0	- 3.75	-14.75
	90	2.12	1.97	-0.15	9.5	10.5	1.00	1.52	1.90	0.38	11.0	-2.25	- 13.25
	6	2.12	2.00	-0.12	9.5	10.75	1.25	1.52	2.05	0.53	11.0	- 3.00	- 14.00
	10	1.97	2.08	0.11	11.5	10.5	-1.0						
	11	1.97	1.97	0.00	11.5	10.6	-0.9						
	12	1.97	2.01	0.04	11.5	12.1	0.6						

¹H-NMR-DATEN^{*a*} DER KOMPLEXE M(CO)₅L UND M(CO)₄L₂ (M = Cr, Mo, W; L = MeP(SMe)₂, CF₃P(SMe)₂). Lösungsmittel: C_6D_6 ; Standard: TMS **TABELLE 2**

^{*a*} δ -Werte (ppm), *J* (Hz); δ (CH₃₁) = chemische Verschiebung der CH₃-Gruppe des freien, δ (CH_{3k}) des koordinierten Liganden (weitere Symbole analog!).

TABELLE 3

¹⁹F-NMR-DATEN ^a DER KOMPLEXE $M(CO)_5L$ UND $M(CO)_4L_2$ (M = Cr, Mo, W; L = CF₃P(SMe)₂); Lösungsmittel: C₆D₆; Standard: CCl₃F

Komplex- typ	Verb.	$\delta(F_L)$	$\delta(F_K)$	$\Delta\delta(\mathbf{F})$	$^{2}J(\mathrm{FP}_{\mathrm{L}})$	$^{2}J(\mathrm{FP}_{\mathrm{K}})$	$\Delta^2 J(\text{FP})$	² <i>J</i> (PP ')
M(CO) ₅ L	4	- 58.23	-61.40	- 3.17	65.4	64.0	-1.4	
	5	- 58.23	-61,70	- 3.47	65.4	66.8	1.4	
	6	- 58.23	-60.50	- 2.27	65.4	69.4	4.0	
$M(CO)_4L_2$	10	- 58.23	-63.54	- 5.31	65.4	61.0	-4.4	-
	11	- 58.23	- 60.35	-2.12	65.4	63.0	-2.4	25.0
	12	- 58.23	- 60.95	-2.72	65.4	64.0	-1.4	26.4

^a δ (ppm), J (Hz); δ (F_L) = chemische Verschiebung der CF₃-Gruppe des freien, δ (F_K) des koordinierten Liganden (weitere Symbole analog!).

lungen bei Berücksichtigung des mit der Koordination verbundenen Vorzeichenwechsels [19] um etwa 13-15 Hz. Als Ursache dafür ist die Zunahme des s-Anteils in der P-C-H-Verknüpfung infolge der Umhybridisierung des Phosphors anzusehen. (b) Die Protonensignale der nicht-koordinierten Gruppen zeigen bei den Komplexen mit dem MeP(SMe)₂-Liganden eine geringe Hochfeldverschiebung. Dies trifft im Fall der M(CO)₅L-Verbindungen auch für die Derivate mit L = CF₃P(SMe)₂ zu $(\Delta\delta(H) \sim 0.1 \text{ ppm})$. Dagegen ergibt sich für die M(CO)₄[CF₃P(SMe)₂]₂-Komplexe eine geringfügige Tieffeldverschiebung der MeS-Signale gegenüber denen der freien Liganden. Diese Ergebnissse decken sich mit früheren Befunden [3].

Fluorresonanzspektren

Die ¹⁹F-NMR-Spektren der $M(CO)_5[CF_3P(SMe)_2]$ -Komplexe weisen keine Komplikationen auf. Als Resonanz wird infolge der ³¹P-¹⁹F-Kopplung ein Dublettsignal beobachtet. Tabelle 3 gibt die $\delta(F)$ - und ²J(PF)-Werte sowie die Koordinationseffekte wieder.

Wie die ¹H-NMR-Spektren, so sind auch die Fluorresonanzspektren der $M(CO)_4[CF_3P(SMe)_2]_2$ -Komplexe von Spinsystemen des Typs X₃AA'X'₃ (X, X' = F; A, A' = P) abzuleiten. Die Signalmuster werden durch Grösse und relative Vorzeichen der Kopplungskonstanten bestimmt. Da die ²J(PF)-Kopplung für direkt gebundene CF₃-Gruppen etwa 60–70 Hz beträgt, ist hier die Bedingung $|^{2}J(PP')| <$ $|^{2}J(PF) + {}^{4}J(P'F)|$ erfüllt. Für diesen Fall werden die komplexen Signalmuster von einem 1/1-Dublett bestimmt, dem bis zu 14 innere und äussere Linien geringer Intensität überlagert sind. In Fig. 4 ist das ¹⁹F-NMR-Spektrum von 11 wiedergegeben. Der Wert für ${}^{2}J(PP')$ ist dem Spektrum direkt zu entnehmen und stimmt mit Literaturdaten ähnlicher Derivate mit CF₃PX₂-Liganden gut überein [4,20]. Die PP'-Kopplung in der als trans-Isomeres vorliegenden Chromverbindung ist offensichtlich deutlich kleiner, so dass ein einfaches Dublettsignal beobachtet wird. Als chemische Verschiebung $\delta(F)$ wird der Signalschwerpunkt, als ²J(PF) der Abstand der beiden intensiven Signale angegeben. Die Koordination der CF₃P-Gruppe wirkt sich auf $\delta(F)$ in Hochfeldverschiebungen von 2-5 ppm, auf ²J(PF) in Verkleinerungen um 1-4 Hz (Komplexe 4, 10, 11, 12) bzw. Vergrösserungen um 1-4 Hz (Komplexe 5, 6) aus. Diese Änderungen stehen im Einklang mit früheren Ergebnissen [3,8,16]. Bemerkenswert ist, dass die Hochfeldverschiebung des trans-Komplexes

Fig. 4. ¹⁹F-NMR-Spektrum von cis-Mo(CO)₄[CF₃P(SMe)₂]₂ (11).

 $Cr(CO)_4[CF_3P(SMe)_2]_2$ um ca. 2 ppm höher ausfällt als die der *cis*-Verbindungen [3].

Phosphorresonanzspektren

Die in Tab. 4 zusammengefassten ³¹P-NMR-Daten der Komplexe 1–12 liefern den Beweis für die Koordination der Liganden durch das P-Atom, da die δ (P)-Werte charakteristische Koordinationseffekte zeigen. Die ¹H-entkoppelten Spektren der Komplexe mit L = MeP(SMe)₂ enthalten generell Singulettsignale, während sich in den ³¹P{¹H}-Resonanzen der M(CO)₄[CF₃P(SMe)₂]₂-Verbindungen die Spinsysteme X₃AA'X'₃ ausprägen (Fig. 5).

Für die Monosubstitutionsprodukte $M(CO)_5 CF_3 P(SMe)_2$ werden bei Protonenentkopplung erwartungsgemäss Quartettsignale [${}^2J(PF)$] beobachtet.

Die Koordinationsverschiebungen $\Delta\delta(P) = \delta(P)(Komplex) - \delta(P)(Ligand)$ beider Komplextypen zeigen eine starke Abhängigkeit von M. Während für die Chromund Molybdänverbindungen grosse Tieffeldverschiebungen registriert werden, führt die Kombination der Liganden mit W(CO)_n-Fragmenten nur zu einem geringen $\Delta\delta(P)$ von 5–7 ppm (L = CF₃P(SMe)₂) oder sogar zu Hochfeldverschiebungen von 15–16 ppm (L = MeP(SMe)₂). Die Koordinationsverschiebungen $\Delta\delta(P)$ fallen für die CF₃P-Liganden bei beiden Komplextypen um etwa 20 ppm grösser aus als bei entsprechenden Methylphosphanen. Dafür ist nach Nixon und Pidcock [21] das grössere π -Akzeptorvermögen der Perfluormethylphosphane verantwortlich, das ausserdem in grösseren ¹J(WP)-Kopplungskonstanten zum Ausdruck kommt. Besonders

TABELLE 4 .

...

³¹ P{ ¹ H}-NMR-DATEN "	DER KOMPLEXE	M(CO) ₅ L UND M(C	(M = Cr, M = Cr, M)	Mo, W; L =
$MeP(SMe)_2, CF_3P(SMe)_2)$); Lösungsmittel: C ₆ D	D ₆ ; δ(P) relativ zu 85% H	1 ₃ PO ₄	

Komplex- typ	Verb.	$\delta(P_L)$	$\delta(\mathbf{P}_{\mathbf{K}})$	$\Delta\delta(\mathbf{P})$	$^{1}J(PW)$	Signalmuster
M(CO) ₅ L	1	72.4	113.8	41.4	-	Singulett
()5	2	72.4	87.2	14.8	_	Singulett
	3	72.4	56.5	-15.9	266	Singulett
	4	71.0	134.1	63.1	_	Quartett
	5	71.0	107.25	36.25	_	Quartett
	6	71.0	77.9	6.9	282	Komplex
$M(CO)_4L_2$	7	72.4	127.6	55.2	-	Singulett
()4 2	8	72.4	87.9	25.5	_	Singulett
	9	72.4	57.1	-15.3	262	Singulett
	10	71.0	145.4	74.4	-	Komplex
	11	71.0	105.3	34.3	_	Komplex
	12	71.0	76.0	5.0	282	Komplex

^a δ (ppm), J(Hz); δ (P_L) = chemische Verschiebung des ³¹P-Kerns des freien, δ (P_K) des koordinierten Liganden; $\Delta \delta(\mathbf{P}) = \delta(\mathbf{P}_{\mathbf{K}}) - \delta(\mathbf{P}_{\mathbf{L}}).$

Fig. 5. ${}^{31}P{}^{1}H$ -NMR-Spektrum von *trans*-Cr(CO)₄[CF₃P(SMe)₂]₂ (10) und *cis*-W(CO)₄[CF₃P(SMe)₂]₂ (12).

Komplex- M^+ M^+ – CO $M^+ - 2CO$ $M^+ - 3CO$ $M^+ - 4CO$ $M^+ - 5CO$ Verb. typ M(CO)₅L 1 32.6 16.3 4.7 16.2 41.9 100 2 37.6 78.5 34.2 75.2 49 100 3 87 65.2 68.5 50 100 75.9 4 55 16 10 59 86 100 5 76 75 46 36 57 100 6 100 45.2 95.2 1.6 72.6 93.5 $M(CO)_4L_2$ 7 50 39 1 0.7 100 17.5 8 35 7.5 100 9 100 5 12 2 69 10 100 29 2 69 11 100 5 3.3 11.7 ----12 100 <1 2 _ _

MASSENSPEKTREN (%) DER KOMPLEXE M(CO)₅L UND M(CO)₄L₂ (M = Cr, Mo, W; L = MeP(SMe)₂, CF₃P(SMe)₂)

hingewiesen sei auf die überraschende Ähnlichkeit der $\delta(P)$ -Werte koordinierter Phosphane, bei denen CF₃- und MeS-Gruppen gegeneinander ausgetauscht sind, z. B. M(CO)₅CF₃P(SMe)₂: $\delta(P)$ 113.8 ppm (Cr); 87.2 ppm (Mo); 56.5 ppm (W) und M(CO)₅(CF₃)₂PSMe [3]: $\delta(P)$ 112.1 ppm (Cr); 87.3 ppm (Mo); 61.8 ppm (W). Diese überraschende Angleichung der chemischen Umgebung der ³¹P-Kerne bei der Koordination verschiedener Liganden ist als Beweis für die Beteiligung mesomerer Wechselwirkungen an den Bindungssystemen von EE'-Liganden und MEE'-Komplexen zu werten [2].

Massenspektren

Die Massenspektren der Komplexe $M(CO)_5L$ (1-6) und $M(CO)_4L_2$ (7-12) zeigen generell den Molekülpeak sowie die für Metallcarbonylderivate charakteristische Fragmentierung durch stufenweise Abspaltung der CO-Liganden. In Tab. 5 sind die M^+ -Daten und die wichtigsten Fragmentionen mit den zugehörigen relativen Intensitäten widergegeben.

Diskussion

Die bei der Untersuchung der M(CO)₅L- und M(CO)₄L₂-Komplexe (M = Cr, Mo, W; L = MeP(SMe)₂, CF₃P(SMe)₂) gewonnenen Daten bestätigen Zusammensetzung und Struktur der Verbindungen. Von den möglichen σ -Donorzentren (Phosphor oder Schwefel) ist stets der Phosphor an das Metallatom gebunden. Das Koordinationsverhalten des CF₃P(SMe)₂-Liganden ist eine Stütze für das σ -Donor/ π -Akzeptor-Modell der MP-Bindung. Trotz seiner geringen σ -Donorfähigkeit bilden sich stabile M–P-Bindungen aus. Dies wird bestätigt durch die im Vergleich zu den Methylphosphankomplexen erhöhten CO-Valenzfrequenzen und die um ca. 20 ppm grösseren Koordinationsverschiebungen $\Delta\delta$ (P) der CF₃P-Liganden. In den ³¹P-NMR-Daten tritt der früher beobachtete mesomere Beitrag zum M–L-Bindungs-

TABELLE 5

Experimentelles

Untersuchungsmethoden; Ausgangsverbindungen

Wegen der Hydrolyse- und Sauerstoffempfindlichkeit sowie der möglichen Toxizität der Verbindungen werden sämtliche Operationen unter Stickstoff oder Argon mit Hilfe einer Hochvakuum-Apparatur durchgeführt. Die Lösungsmittel werden nach den üblichen Methoden getrocknet und mit Stickstoff oder Argon gesättigt. Als Reaktionsgefässe dienen Mehrarmampullen mit Zerschlagventilen. Bei grösseren Ansätzen verwendet man Schlenkkolben. Sämtliche Geräte werden vor der Nutzung unter Vakuum ausgeheizt.

IR-Spektren. Model 683 der Firma Perkin-Elmer; Lösung in Cyclohexan (KBr-Zellen).

NMR-Spektren. ¹H- und ¹⁹F mit WP80 CW- und WH90 FT-NMR-Spektrometern der Firma Bruker Analytische Messtechnik; TMS bzw. CCl₃F als interne Standard-Substanzen. ³¹P-Spektren unter ¹H-Breitband-Entkopplung mit dem WH90-Spektrometer und P(OMe)₃ als externem Standard.

Massenspektren. CH5-Spektrometer der Firma MAT-Finnigan bei folgenden Aufnahmebedingungen: Elektronenenergie: 20/70 eV; T (Ionenquelle) 200°C; Ionenstrom 100/300 μ A; Beschleunigungsspannung 3000 V; SEV-Spannung 2.0 kV.

Die Darstellung der Liganden gelingt durch HX-Abspaltung aus MePCl₂ bzw. F_3CPI_2 und HSMe mit Hilfe von NMe₃ als Base [5]. CF_3PI_2 wird nach bekannten Verfahren aus dem Produktgemisch der Umsetzung von CF_3I mit rotem Phosphor gewonnen [22]. Die Komplexvorstufen M(CO)₅THF [6] und M(CO)₄NBD (M = Cr, Mo, W) [23-26] werden ebenfalls in Anlehnung an Literaturmethoden synthetisiert.

Darstellung der M(CO), L-Komplexe 1-6

Die Darstellung dieser Komplexe erfolgt nach der Methode der "indirekten photochemischen Substitution". Die Umsetzung der $M(CO)_5$ THF-Verbindungen mit den Liganden MeP(SMe)₂ und CF₃P(SMe)₂ lässt sich qualitativ am Farbumschlag (s. Darstellung) verfolgen. Die Komplexe 1-3 mit L = MeP(SMe)₂ fallen als Kristalle an, während die CF₃P(SMe)₂-Derivate 4-6 bei Raumtemperatur in öliger Form vorliegen (Einzelheiten s. Tab. 6).

Die Arbeitsvorschrift lehnt sich an die früher publizierte Synthese von $Cr(CO)_5L$ -Verbindungen mit Dithiaphospholan-Liganden an [4]. Deshalb werden hier nur die Massnahmen angefügt, die bei der Isolierung der Reinprodukte zu beachten sind. Nach möglichst vollständigem Austausch von THF gegen die Phosphanliganden (Reaktionszeiten s. Tab. 6) wird das Lösungsmittel im Vakuum abkondensiert. Als Produkte des MeP(SMe)₂-Liganden bleiben Feststoffe zurück, während die Komplexe M(CO)₅P(CF₃)(SMe)₂ als ölige Rückstände anfallen. Die Produkte werden durch Kondensation bei ziehender Pumpe von nicht umgesetzten Resten der Liganden befreit; das im Gemisch enthaltene Metallhexacarbonyl wird durch Sublimation bei Raumtemperatur entfernt. Die reinen Komplexe erhält man schliesslich durch Umkristallisation. Dazu werden Pentan- oder Hexanlösungen der Produkte im Aceton/Trockeneis-Kältebad bis zur einsetzenden Kristallisation

TABELLE 6

DARSTELLUNG ^{*a*} DER KOMPLEXE $M(CO)_5L$ UND $M(CO)_4L_2$ (M = Cr. Mo, W; L = $CH_3P(SMe)_2$, $CF_3P(SMe)_2^b$. REAKTIONSZEITEN, AUSBEUTEN UND EIGENSCHAFTEN DER PRODUKTE

Verb.	Komplex- typ	Ligand	М	ReaktZeit (h)	Ausbeute (%)	Bemerkungen
1	M(CO) ₅ L	MeP(SMe) ₂	Cr	2	59	hellgelbe Kristalle
2			Мо	60	45	hellbraune Kristalle
3			W	3	62	hellgelbe Kristalle
4		$CF_3P(SMe)_2$	Cr	12	45	gelbgrünes Öl
5			Мо	132	35	orangegelbes Öl
6			W	140	50	braungelbes Öl
7	$M(CO)_4L_2$	MeP(SMe) ₂	Cr trans	14 d	60	gelbe Kristalle
8			Mo cis	1	66	gelbe Kristalle
9			W cis	24	69	braungrüne Kristalle
10		$CF_{1}P(SMe)_{2}$	Cr trans	28 d	55	gelbe Kristalle; 80% Umsatz
11		5. 72	Mo cis	16	55	gelbe Kristalle
12			W cis	28 d	51	hellbraune Kristalle (90%)

^a Eingesetzte Menge: Für M(CO)₅L: Jeweils 10 mmol M(CO)₆; für M(CO)₄L₂: Jeweils 2 mmol M(CO)₄-Norbornadien; in beiden Fällen werden die Liganden in 5% igem Überschuss zugegeben. ^b Lösungsmittel: M(CO)₅L in THF, M(CO)₄L₂ in Pentan (M = Cr, Mo) oder Hexan (M = W).

TABELLE 7

ANALYTISCHE DATEN (C, H, M^+) DER KOMPLEXE 1–12 IM VERGLEICH MIT BERECHNETEN WERTEN

Verb.	Summenformel	M (ber.)	m/e ª	Analysen (Gef. (ber.) (%))
			M^+	C	Н
1	C ₀ H ₀ CrO ₅ PS ₂	332.24	332	29.08	2.75
	0 7 5 2			(28.92)	(2.66)
2	C ₈ H ₉ MoO ₅ PS ₂	376.19	376	26.52	2.66
				(25.50)	(2.40)
3	C ₈ H ₉ O ₅ PS ₂ W	464.10	464	20.74	2.04
				(20.70)	(1.94)
4	$C_8H_6CrF_3O_5PS_2$	386.22	386	24.50	1.62
				(24.90)	(1.55)
5	C ₈ H ₆ F ₃ MoO ₅ PS ₂	430.16	430	22.37	1.48
				(22.30)	(1.40)
6	C ₈ H ₆ F ₃ O ₅ PS ₂ W	518.07	518	18.39	1.12
				(18.50)	(1.16)
7	$C_{10}H_{18}CrO_4P_2S_4$	444.43	4 44	26.91	4.17
				(27.03)	(4.05)
8	$C_{10}H_{18}M_0O_4P_2S_4$	488.38	488	22.33	3.33
				(24.59)	(3.69)
9	$C_{10}H_{18}O_4P_2S_4W$	576.29	576	21.05	3.29
				(20.83)	(3.12)
10	$C_{10}H_{12}CrF_{6}O_{4}P_{2}S_{4}$	552.38	552	22.02	2.11
				(21.74)	(2.17)
11	$C_{10}H_{12}F_6M_0O_4P_2S_4$	596.32	596	20.23	2.06
				(20.10)	(2.01)
12	$C_{10}H_{12}F_6O_4P_2S_4W$	684.23	684	17.65	1.70
				(15.54)	(1.75)

^a Angaben beziehen sich auf die Isotope ³²S, ⁹⁶Mo und ¹⁸⁴W.

340

abgekühlt $(-25^{\circ}\text{C bei } \text{L} = \text{MeP}(\text{SMe})_2$; bei $\text{L} = \text{CF}_3\text{P}(\text{SMe})_2$: -55 (Cr), -50 (Mo), -25 (W)) und die Kristalle durch Tieftemperaturfiltration abgetrennt.

Darstellung der $M(CO)_4L_2$ -Komplexe 7–12

Die Ausgangsverbindungen $M(CO)_4NBD$ werden in Pentan oder Hexan (W-Verbindung) als Lösungsmittel in Ampullen mit Zerschlagventilen vorgelegt und die Liganden in etwa 5% Überschuss unter Vakuum einkondensiert. Wegen der Luftund Feuchtigkeitsempfindlichkeit der Verbindungen und der langen Reaktionszeiten erfolgten die Umsetzungen in abgeschmolzenen Gefässen. Der Reaktionsablauf wird mittels NMR-Messung verfolgt. Nach vollständiger Umsetzung der Ausgangskomplexe (Verschwinden der charakteristischen ¹H-Signale) werden im Hochvakuum das Lösungsmittel und der Überschuss an Ligand abkondensiert. Zur Reinigung wird aus Pentan, Hexan oder in einem Fall aus einem Toluol/Hexan-Gemisch umkristallisiert. Die Kristalle werden mehrmals mit kaltem Pentan gewaschen und im Vakuum getrocknet (Einzelheiten s. Tab. 6). Die analytischen Daten (C, H, M^+) der neuen Komplexe sind in Tab. 7 zusammengefasst.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Landesamt für Forschung Nordrhein-Westfalen und dem Fonds der Chemischen Industrie für die Förderung dieser Untersuchungen.

Literatur

- 1 Mitteilung XXXV: J. Grobe und R. Haubold, Z. Anorg. Allg. Chem., im Druck.
- 2 J. Grobe und D. Le Van, Z. Anorg. Allg. Chem., 518 (1984) 36.
- 3 J. Grobe, M. Köhne-Wächter und D. Le Van, Z. Anorg. Allg. Chem., 519 (1984) 67.
- 4 J. Grobe, D. Le Van und J. Szameitat, J. Organomet. Chem., 289 (1985) 341.
- 5 R. Gleiter, J. Grobe, D. Le Van und J. Szameitat, in Vorbereitung.
- 6 W. Strohmeier und F.J. Müller, Chem. Ber., 102 (1968) 3609.
- 7 H.P. Fritz und Th. Schöttle, J. Organomet. Chem., 265 (1984) 175.
- 8 C.G. Barlow, J.F. Nixon und M. Webster, J. Chem. Soc., A (1968) 2216.
- 9 J. Apel, R. Bacher, J. Grobe und D. Le Van, Z. Anorg. Allg. Chem., 453 (1979) 39.
- 10 J. Grobe, J. Hendriock und G.F. Scheuer, Z. Anorg. Allg. Chem., 443 (1978) 97.
- 11 K. Betka und J. Grobe, J. Organomet. Chem., 210 (1981) 193.
- 12 P. Aslanidis und J. Grobe, J. Organomet. Chem., 249 (1983) 103.
- 13 L.E. Orgel, Inorg. Chem., 1 (1962) 25.
- 14 F.A. Cotton und C.S. Kraihanzel, J. Am. Chem. Soc., 84 (1962) 4432.
- 15 C. Barbeau und J. Turcotte, Can. J. Chem., 54 (1976) 1603.
- 16 K. Betka und J. Grobe, J. Organomet. Chem., 210 (1981) 313.
- 17 J. Grobe und D. Le Van, Z. Naturforsch. B, 34 (1979) 1653; 35 (1980) 694; J. Fluor. Chem., 24 (1984) 25.
- 18 J. Apel und J. Grobe, Z. Anorg. Allg. Chem., 453 (1979) 53.
- 19 G. Mavel, Progr. NMR Spectrosc., 1 (1966) 251; A.R. Cullingworth, A. Pidcock und J.D. Smith, Chem. Commun., (1966) 89.
- 20 J.F. Nixon und J.R. Swain, J. Chem. Soc., Dalton Trans., (1972) 1038.
- 21 J.F. Nixon und A. Pidcock, Annual Rev. NMR Spectroscopy, 2 (1966) 345.
- 22 F.W. Bennett, H.J. Emeléus und R.N. Haszeldine, J. Chem. Soc., (1953) 1565.
- 23 M.A. Bennett, L. Pratt und G. Wilkinson, J. Chem. Soc., (1961) 2037.
- 24 R. Pettit, J. Am. Chem. Soc., 81 (1959) 1266.
- 25 D.P. Tate, W.R. Knipple und J.H. Augl, Inorg. Chem., 1 (1962) 433.
- 26 R.B. King und A. Fronzaglia, Inorg. Chem., 5 (1966) 1837.